国产丝袜极品视频在线观看_午夜精品一区二区成人免费_色偷偷亚洲男人天堂岛_亚洲AV自慰白浆喷水肥臀_中文在线理伦视频在线播放

ENGLISH
您所在的位置: 首頁» 新聞中心» 講座預(yù)告

【明理講堂2024年第40期】6-17合肥工業(yè)大學(xué)柴一棟教授:Short-Form Videos and Mental Health: A Knowledge-Guided Neural Topic Model

報(bào)告題目:Short-Form Videos and Mental Health: A Knowledge-Guided Neural Topic Model

時(shí)間:2024年6月17日 16:00-17:30

地點(diǎn):中關(guān)村校區(qū)主樓317

報(bào)告人:柴一棟教授

報(bào)告人簡(jiǎn)介:

柴一棟,合肥工業(yè)大學(xué)教授,博士生導(dǎo)師。本科畢業(yè)于偉德國(guó)際1946bv官網(wǎng)信息管理與信息系統(tǒng)專業(yè),博士畢業(yè)于清華大學(xué)經(jīng)管學(xué)院管理科學(xué)與工程系,主要研究信息系統(tǒng)安全與網(wǎng)絡(luò)空間管理、智慧醫(yī)療管理、商務(wù)智能管理等。以第一作者或通訊作者發(fā)表研究成果于MISQ、ISR、JMIS、IEEE TDSC、IEEE TPAMI、IEEE TKDE等國(guó)際頂級(jí)期刊。發(fā)表學(xué)術(shù)專著一部,授權(quán)專利多項(xiàng)。主持國(guó)家優(yōu)秀青年基金等項(xiàng)目。獲全國(guó)首屆數(shù)據(jù)空間大會(huì)優(yōu)秀科技成果獎(jiǎng)、國(guó)際信息系統(tǒng)權(quán)威會(huì)議WITS 2021 best paper award等榮譽(yù)。

報(bào)告內(nèi)容簡(jiǎn)介:

While short-form videos head to reshape the entire social media landscape, experts are exceedingly worried about their depressive impacts on viewers. To prevent widespread consequences, platforms are eager to predict these videos’ impact on viewers’ mental health. Subsequently, they can take intervention measures, such as revising recommendation algorithms and displaying viewer discretion. Nevertheless, applicable predictive methods lack relevance to well-established medical knowledge, which outlines clinically proven external and environmental factors of depression. To account for such medical knowledge, we resort to an emergent methodological discipline, seeded Neural Topic Models (NTMs). However, existing seeded NTMs suffer from the limitations of single-origin topics, unknown topic sources, unclear seed supervision, and suboptimal convergence. To address those challenges, we develop a novel Knowledge-guided NTM to predict a short-form video’s depressive impact on viewers. Extensive empirical analyses using TikTok and Douyin datasets prove that our method outperforms state-of-the-art benchmarks. Our method also discovers medically relevant topics from videos that are linked to depressive impact. We contribute to IS with a novel video analytics method that is generalizable to other video classification problems. Practically, our method can help platforms understand videos’ mental impacts, thus adjusting recommendations and video topic disclosure.

(承辦:管理工程系、科研與學(xué)術(shù)交流中心)

TOP